APPLYING ACTIVE LEARNING IN ADVANCED MATHEMATICS TO FOSTER AND DEVELOP MATHEMATICAL PROBLEM - SOLVING COMPETENCE FOR ENGINEERING STUDENTS

APPLYING ACTIVE LEARNING IN ADVANCED MATHEMATICS TO FOSTER AND DEVELOP MATHEMATICAL PROBLEM - SOLVING COMPETENCE FOR ENGINEERING STUDENTS

Nguyen Huu Hau nguyenhuuhau@hdu.edu.vn Hong Duc University 565 Quang Trung street, Hac Thanh ward, Thanh Hoa province, Vietnam
Le Luong Vuong* leluongvuong@iuh.edu.vn Industrial University of Ho Chi Minh City 12 Nguyen Van Bao street, Hanh Thong ward, Ho Chi Minh City, Vietnam
Hoa Anh Tuong hatuong@sgu.edu.vn Saigon University 273 An Duong Vuong street, Cho Quan ward, Ho Chi Minh City, Vietnam
Summary: 
This paper reviews the application of active learning in teaching the course advanced Mathematics, focusing on the formation and development of mathematical problem-solving competence among engineering undergraduates. Based on a theoretical analysis of active learning and the structural components of problem-solving competence, a five-step instructional process was designed: (1) Problem identification, (2) Exploratory activities, (3) Discussion and argumentation, (4) Knowledge generalization, and (5) Application to real-world problems. An experimental study was conducted with 80 engineering students through lessons designed according to this framework. The results shown that active learning enhanced students’ competence to analyze situations, select appropriate solving strategies, and evaluate outcomes, thereby strengthening key components of mathematical problem-solving competence. These findings suggested potential implementation in other Mathematics and engineering courses and provided a scientific basis for innovating university Mathematics instruction toward learners’ competence development.
Keywords: 
Active learning
Mathematical problem-solving competence
engineering students
innovative teaching methods.
Refers: 

[1] Blum, W., & Leiβ, D. (2007). How do students and teachers deal with modeling problem?. In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA12): Education, engineering and economics. Horwood Publishing., 222-231.

[2] Freemana, S., Eddya, S. L., McDonougha, M., Smithb, M. K., Okoroafora, N., Jordta, H. (2014). Active Learning Increases Student Performance in Science, Engineering, and Mathematics. pp.8410-8415. Proceedings of the National Academy of Sciences of the United States of America

[3] Gay, E. (2022). Project - Based Learning in the Mathematics Classroom. Honors Theses.

[4] Gelman, R. (1971). Piaget and Education. PsycCRITIQUES 16(5), 312-313.

[5] Hmelo-Silver, C. E. (2004). Problem-Based Learning: What and How Do Students Learn?. Educational Psychology Review, Vol. 16, No. 3, 235-266.

[6] Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. New York: Routledge.

[7] Kilpatrick, J., Swafford, J. & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.

[8] Lê Hoàng Quân. (2025). Phát triển năng lực giải quyết vấn đề Toán học thông qua dạy học giải toán có lời văn cho học sinh lớp 5. Tạp chí Khoa học Giáo dục Việt Nam, tr.53-63.

[9] McLeod, S. (2024). Vygotsky’s Theory of Cognitive Development. Simply Psychology, DOI:10.5281/ zenodo.15680745.

[10] NCTM. (2000). Principles and Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.

[11] Nguyễn Bá Kim. (2004). Phương pháp dạy học môn Toán. NXB Đại học Sư phạm, Hà Nội.

[12] Nguyễn Cảnh Toàn. (2005). Tuyển tập các công trình Toán học và giáo dục. NXB Giáo dục, Hà Nội.

[13] Nguyễn Cảnh Toàn, Nguyễn Kì, Lê Khánh Bằng & Vũ Văn Tảo. (2004). Học và dạy cách học. NXB Đại học Sư phạm, Hà Nội.

[14] Nguyễn Hữu Hậu, Hoa Ánh Tường, Lê Huỳnh Vũ & Trịnh Thị Lê Mai. (2023). Phát triển năng lực giải quyết vấn đề Toán học cho học sinh lớp 10 khi dạy học chủ đề các hệ thức lượng trong tam giác. Tạp chí Khoa học, Trường Đại học Hồng Đức, tr.39-52.

[15] Nguyễn Thanh Thủy. (2019). Tổ chức dạy học theo định hướng phát triển năng lực cho sinh viên Sư phạm trong đổi mới giáo dục hiện nay. Tạp chí Khoa học Giáo dục Việt Nam, tr.34-38.

[16] Niss, M. & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 9-28.

[17] OECD. (2017). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic and Financial. Paris: PISA, OECD Publishing, http:// dx.doi.org/10.1787/9789264255425-en.

[18] Perkins, R. & Shiel, G. (2014). Problem Solving in PISA: The Results of 15-year-olds on the Computer-based Assessment of Problem. Educational Research Centre.

[19] Polya, G. (1985). How to Solve It- A New Aspect of Mathematical Method. Princeton University Press.

[20] Prince, M. (2004). Does Active Learning Work? A Review of the Research. Journal of Engineering Education, 1-9.

[21] Prince, M. J. & Felder, R. M. (2006). Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases. Journal of Engineering Education, 123–138.

[22] Rocha, H. & Babo, A. (2024). Problem-solving and mathematical competence: A look to the relation during the study of Linear Programming. Thinking Skills and Creativity 51(2):101461, 1-14.

[23] Savery, J. R. (2006). Overview of Problem-based Learning: Definitions and Distinctions. Interdisciplinary Journal of Problem-Based.

[24] Schoenfeld, A. H. (1985). Mathematical Problem Solving. ACADEMIC PRESS, INC. .

[25] Thái Thị Nga. (2016). Xây dựng tiêu chí đánh giá năng lực giải quyết vấn đề của sinh viên Đại học Sư phạm Toán. Tạp chí Khoa học Giáo dục Việt Nam, tr.36-38.

[26] Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes. Harvard University Press.

[27] Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. pp. 45–65). Hogrefe & Huber Publishers.

Articles in Issue